Multirate generalized additive Runge Kutta methods
نویسندگان
چکیده
This work constructs a new class of multirate schemes based on the recently developed generalized additive Runge-Kutta (GARK) methods [10]. Multirate schemes use different step sizes for different components and for different partitions of the right-hand side based on the local activity levels. We show that the new multirate GARK family includes many well-known multirate schemes as special cases. The order conditions theory follows directly from the GARK accuracy theory. Nonlinear stability and monotonicity investigations show that these properties are inherited from the base schemes provided that additional coupling conditions hold.
منابع مشابه
A class of generalized additive Runge-Kutta methods
This work generalizes the additively partitioned Runge-Kutta methods by allowing for different stage values as arguments of different components of the right hand side. An order conditions theory is developed for the new family of generalized additive methods, and stability and monotonicity investigations are carried out. The paper discusses the construction and properties of implicit-explicit ...
متن کاملMonotonicity conditions for multirate and partitioned explicit Runge-Kutta schemes
Multirate schemes for conservation laws or convection-dominated problems seem to come in two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In this paper these two defects are discussed for onedimensional conservation laws. Particular attention will be given to monotonicity properties of the multirate schemes, such as maximum principles and the total va...
متن کاملA Linearly Fourth Order Multirate Runge-Kutta Method with Error Control
To integrate large systems of locally coupled ordinary differential equations (ODEs) with disparate timescales, we present a multirate method with error control that is based on the Cash-Karp Runge-Kutta (RK) formula. The order of multirate methods often depends on interpolating certain solution components with a polynomial of sufficiently high degree. By using cubic interpolants and analyzing ...
متن کاملMultirate Numerical Integration for Ordinary Differential Equations
Subject headings: Multirate time stepping / Local time stepping / Ordinary differential equations / Stiff differential equations / Asymptotic stability / High-order Rosenbrock methods / Partitioned Runge-Kutta methods / Mono-tonicity / TVD / Stability / Convergence. Het onderzoek dat tot dit proefschrift heeft geleid werd mede mogelijk gemaakt door een Peter Paul Peterichbeurs –verstrekt door d...
متن کاملA Fourth Order Multirate Runge-Kutta Method with Error Control
To integrate large systems of ordinary differential equations (ODEs) with disparate timescales, we present a multirate method with error control that is based on embedded, explicit Runge-Kutta (RK) formulas. The order of accuracy of such methods depends on interpolating certain solution components with a polynomial of sufficiently high degree. By analyzing the method applied to a simple test eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 133 شماره
صفحات -
تاریخ انتشار 2016